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Force and couple exerted on a moving 
electromagnetic dipole 

J. R. ELLIS 
University of Sussex, Brighton 
M S .  received 8th October 1969 

Abstract. A general approach is used to describe particles possessing dipole 
moment. By this means, exact expressions for the force and couple exerted on a 
dipole moving in an electromagnetic field are derived in terms of vectors 
representing the velocity and orientation of the dipole and their derivatives 
with respect to time. The  formulae reduce to the usual expressions for the 
force and couple when the dipole is at rest, but are valid for all speeds of the 
dipole. 

1. Introduction 
The classical theory of charged particles, as a relativistic theory, has been developed 

from two constituent theories : relativistic particle mechanics and Maxwell-Lorentz 
electrodynamics. The  latter theory principally contains the Maxwell-Lorentz law 
of force for a charged particle moving in an electromagnetic field 

f” = -eFhvV,,. 

In  any system of interacting particles where it is necessary to determine the forces 
acting, these two theories may be used to obtain the equations of motion of the system. 
The method is usually based on an action principle which is derived from knowledge 
of the forces acting on one particle due to its presence in a field created by another. 
Thus, with the exception of radiation reaction forces, we are able to determine the 
motion of the system. Simple modification of the Lagrangian enables us to deduce the 
equations of motion for particles moving in any given electromagnetic environment, 
and in the simple case where a charge is acted upon by an external electromagnetic 
field the problem can often be solved explicitly; for example, in the case where an 
electron is moving in uniform crossed electric and magnetic fields, according to the 
equations 

d e 
- (mV)  = e E + - V A B  
dt C 

and the motion is well known to be that of a certain kind of helix. 
It is our intention to raise the level of the classical theory slightly by allowing our 

particles to possess spin angular momentum in addition to linear momentum. This 
means that they also possess moment and are moving subject to couples as well as 
forces. Although no particles of the same ‘status’ as the electron exist in nature, with 
dipole characteristics worthy of investigation, nevertheless it might be useful to know 
how such particles should behave in theory, according to the classical theory, and also 
how spinning particles should behave, when the dipole aspect would predominate. 

Partly to this end we have derived three-dimensional vector expressions for the 
force and couple exerted on a moving dipole. For the most part the results which we 
have obtained are quite new. Although the expressions we have derived reduce to the 
usual (vector) expressions for the force and couple when the dipole centre is at rest, 
the method of their derivation has followed a four-dimensional approach. This is 
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252 J. R. Ellis 

because, unlike the derivation of the Maxwell-Lorentz force formula for a moving 
charge, the only really successful method for investigating the force on a moving 
dipole is via the suffix method. We have used this method in the following section 
in deriving equations of motion for a dipole, which are analogous to the moving 
charge equations 

and so expressions for the force and couple in four-dimensional suffix notation result 
directly from them. 

The  three-dimensional vector expressions for the force and couple which we have 
derived look fairly simple but we have not applied them to any practical problems. 
They may be of some use in cases where the use of suffixes is not desirable. A check 
can be made on the validity of the results we have obtained by taking the case where a 
dipole moves with uniform velocity. In  this case we may transform the usual expres- 
sions for the force and couple acting on the dipole in the rest frame by Lorentz 
transformation to the new frame. In  this special case the transformation is not quite 
as straightforward as one might imagine and the corresponding tensor transformations 
for the velocity, moment, force and couple have to be written in three-dimensional 
form to deduce the final result. 

It is sometimes useful to consider the fields of slowly moving charges (first-order 
theory) and so we have derived expressions for the force and couple exerted on a 
slowly moving dipole. These expressions, for what they may be worth, bear a very 
close resemblance to the Maxwell-Lorentz force formula for a moving charge. This 
fact is capable of independent verification. 

2. The moving dipole 
We consider a moving point in space as represented as a ‘four-event’ x,, where 

xo = ct. The xu denote the components of a four-vector referred to an inertial frame. 
Greek suffixes take the values 0, 1, 2, 3, and we shall raise and lower suffixes by 
means of the metric tensor g,, = diag (1, - 1, - 1, - l), where the metric of special 
relativity is taken in the form dT2 = g,, dx” dxv. Suffixes prefixed by a comma will 
denote differentiation with respect to the event xu and differentiation with respect to 
the proper time r is denoted by a dot. Thus the four-velocity 2, at an event on a given 
world line xu = x”(T) has the value Vu = (p, PVjc), where ,B = (1 - Yz/cz)-l’z 
(since 2,2, = 1). 

We suppose that the moment of a moving point-dipole (we consider an electric 
dipole for simplicity) is represented by means of a ‘four-moment’ q’ = (4,  q) which 
is defined at the event to be orthogonal (in a four-dimensional sense) to the four- 
velocity of the dipole centre Vfi. Thus @Vu = 0. In  order to relate this moment 
with the ordinary three-dimensional vector moment (n), we must consider the anti- 
symmetrical moment tensor (or see, for example, Panofsky and Phillips 1964, p. 438), 
or six-vector 

puv = ql”v”y-qvvu (2.1) 
whose components are given by 

cpo1,Poz,Po3)  = -6 (q- --) 9v 
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Writing 
qv n = q-  -- 

c 

it can be verified that the latter quantity represents the ordinary three-dimensional 
vector moment of the dipole.? This fact is not surprising in view of the covariance 
of the quantities (2.2) from the values in an instantaneous rest frame. It follows that 
any formal tensor expressions containing (2.1) may be reduced quite readily to 
three-dimensional vector quantities by taking components. 

In  order to describe the effect of Lorentz contraction on the moving moment we 
shall now consider the case of a dipole of constant strength ((q’qu)1’2 = constant), 
although as it happens the following formula remains valid in general. The  formula 
we quote is 

where AV is the constant strength-value of the moment measured in the dipole’s 
rest frame and In1 is the magnitude of the observed moment. ,4n observer who is 
moving with the dipole always records the constant value M for the magnitude of the 
moment. On the other hand, to an observer with respect to whom the dipole is 
moving, the infinitesimal distance between the poles of the dipole, and therefore the 
measured moment In], will differ from their values in the instantaneous rest frame of 
the dipole, by the above ratio. We can illustrate the validity of this formula in two 
cases where the dipole moves in a direction (i) perpendicular to, and (ii) parallel to, 
its axis. For (i) the formula gives no change and for (ii) the formula gives a pure 
Lorentz contraction, as we should expect. The justification for (2.4) for all other 
cases may be made on the basis of a dipole as an ‘infinitesimal rigid rod’ according to 
the requirements of Lorentz invariance. (A derivation is given in an appendix.) 

We hope we may be forgiven if we now venture off, slightly at a tangent, into some 
tensor algebra. The  reason has been given in the introduction, and we need to set up 
a working model of a moving dipole. 

It is necessary to state that we shall need the alternating symbols tuvaa, ,$pvffB 

which are relative tensors having the numerical value of 8::;; (i.e. they are equal to 
+ 1 if p, v, E, ,O is an even permutation of 0, 1, 2, 3 ; - 1 if p, Y, CI, ,O is an odd permuta- 
tion of 0, 1, 2, 3, and zero otherwise). Duality on a skew pair of indices will be 
defined according to the definitions 

iF,t = .$gl12,$uvaRFaB (or iF2V = Jg-l12[uv@FEa) 

where g = det(g,,) = - 1. The  [ symbols are therefore related to the familiar 
E tensor by the following relations : 

€’lVaR = ig-l12[UvaR, E u v ~ 5  = ig1i2tuvaR, 
Effectively the E symbol changes sign when its indices are raised or lowered (unlike 
the E tensor). The  following notation will be used for the electromagnetic field ilz 
vacuo (Gaussian units) : 

(Fol, Fo2, Fo3) F E ,  (FZ3, F31, F12) = B 
AU = (+, A ) .  Fu* = Ausv-Aw, 

t In view of orthogonality, q and q are related by the equation q = q . V/c. From this the 
physical interpretation of II becomes clear (Ellis 1963). 
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Although it is well known that the invariant interaction Lagrangian for a charge 

yields the generalized momentum of the form 

where GU is the mechanical momentum, for a dipole the corresponding situation is 
not often referred to. The  corresponding Lagrangian is -$p'BFuB, and this gives 
rise to an additional term in the generalized momentum, arising from differentiation 
of the moment tensor p'O with respect to V,. A straightforward calculation will show 
that 

3L 
- - = GU+eA@+q,F@". (2.5) -sv, 

It is our purpose to use expression (2.5) to work out the equations of motion of a 
pole-plus-dipole particle, following a general approach such as the one given by 
Barut (1964). The  argument follows the method on page 77 of his book. The  
Lagrangian we consider is a function of 

where XU are 'global' coordinates (referring to the motion of the centre of the pole- 
plus-dipole particle) and the q i l cU,  are internal space coordinates, or 'degrees of 
freedom,' corresponding to the spin ( K  = 1, 2, 3), orthogonal to the four-velocity. 
(We have here excluded the vector corresponding to tl = 0 since we assume a Lagran- 
gian independent of P.) The latter coordinates are introduced principally in order to 
refer to the spin angular momentum of the particle. Variation of such a Lagrangian 
leads to the following expression: 

The  first two terms enclosed in braces vanish because they are the Euler-Lagrange 
equations. In  the remaining terms we consider the variations to be caused (i) by an 
infinitesimal translation and (ii) by an infinitesimal Lorentz rotation. The two result- 
ing equations of motion will be for the momentum and angular momentum. 
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We assume that A, and Au,v enter the Lagrangian explicitly only via interaction 
(the last antisymmetrically in p and Y), so that 

The generalized momentum p’ is given by 

SL p = -  
U 2 X U  

and the generalized spin angular momentum we call Suv 

i L  
4 V I ( U ,  s,, = 2- 

~ Q r u ( U 0  

For an infinitesimal translation (i) 

d 
d r  

6 X U  = € U ,  - ( 6 ~ ” )  = 0 ,  6A, = 6q’(,, = 0 
we obtain 

For an infinitesimal rotation (ii), 

which reduces with the help of (2.6) to 

S U V  +2Pr,Vv1 = -2eV[,AvI - ~ ~ p ~ r u ~ ~ , P + ~ P r , ~ p ~ v , p .  (2.7) 

Use of our expression (2.5) for the generalized momentum leads to two equations 
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(Ellis 1966) from (2.6) and (2.7) 

s,, + 2G,, vv, = 2q,,F,,,V" (2.9) 

which are the required equations of motion of an electric dipole of moment 411 (with 
added charge e). It should be pointed out that our internal coordinates have 
disappeared from these equations, but they are present implicitly in the value of 
Suy. Multiplication of the second equation (2.9) by V v  gives the mechanical momentum 

GU = m,c2V,- SuvV, (2.10) 

where moc2 = GKVK. It is noteworthy that the mechanical momentum is independent 
of the electromagnetic field, a state of affairs which we would consider desirable. The 
rest mass of the dipole is mo, and this may or may not remain constant throughout the 
motion. 

The  expression for the four-force on the dipole is clearly given by the second and 
third terms in the expression for GU in (2.8), while the expression for the couple is 
given by the right-hand side of (2.9). We can make this more recognizable as a 
couple by expressing the six components of suv in terms of two four-vectors U&, Tu 
orthogonal to Vfi 

(2.11) 

(Any bivector may be so represented.) In  the instantaneous rest frame, S23, S3I, SI2 
represent the negative of the angular momentum and TI, T2, T3 the components of the 
couple. We can demonstrate that the four-vector U' does not form part of the equa- 
tions of motion by substituting (2.11) into (2.9). We find for the left-hand side of 
(2.9), calling this C,,, 

c,, = s,v-2s[u,v"vvl (from (2.10)) 

= tUvKBTff V' +25[uu8vT4 VyVa V,] - UKVv + UvVII + 2U,,V,VaV,,, - 2G,V[,Vff VL.] 
= fuvffBTffV4. 

By an argument similar to the interpretation of the components of the antisymmetric 
moment tensor (2.2), the components of the observed couple are given by 

V 
( c 2 3 ,  c31, c12) E -pc ,  (col, CO21 c03) pc A- (2.12) 

c 

where 

(2.13) 

3. Vector description 
Since the vector moment n is given by 
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(expression (2.3)), it follows from the orthogonality condition q = q , Vjc  that 

Hence 

q =  n + -  .-. ( q:l : 
and 

n . V  V 
q = n + P 2  (7) 7. 

We therefore have the following expression for q’ : 

Denoting differentiation with respect to ct by primes, we have the following formulae 
for q and q :  

Hence 
q = Pq’, q = Pq‘. 

Thus we can write the dipole four-force G” from (2.8) in terms of three-dimensional 
vectors as follows : 

G u  = (P ,  F )  = -q,Fu“-q‘Ffiv,,V, 

where a prime acting on a field quantity is understood as a partial derivative. The  
components of the four-force then become 



25 8 J.  R. Ellis 

where V is taken to act on E and B only. (Note that a prime is taken to act on all 
quantities.) These expressions simplify considerably in the case of slowly varying 
and especially static fields. For example, in the case of a static B field the expression 
for the force reduces to 

In  a similar way to the evaluation of F and P, the couple from the derived expres- 
sions (2.12) and (2.13) becomes 

C = Q A E + ( Q . B ) - -  r i v ) B  - 
C 

= p 2 { n + I A  C (:A .))A (E C (3.3) 

In  many practical cases we could neglect all terms where c occurs more than twice 
in the denominator. If the fields do not vary wildly and speeds are not very high, the 
following formulae will be useful, although their exactness is not retained : 

P = n ' ,  E + ( n  .7) -- (" i "1 
n . V  ' 

F = n ' i \ B + ( ( T ) E )  +p3(n.v)E+(n.v)  

C = p 2 n A E + n A  A B  + - - A  - A n  A E .  (% 1 ir (: i )  
If we go further and neglect all terms where c occurs more than once in the 

denominator, we obtain the following rough expressions for P, F and C, which still 
show relativistic aberrations from the usual static formulae. For this case, the effects 
of Lorentz contraction (formula (2.4)) are ignored: 

F . V  
P =  n ' . E + -  

C 

V 
F = n ' r \ B + ( n .  0) 

V 

The formulae are good approximations for slow speeds and when the fields are slowly 
varying with time. They bear an obvious resemblance to the Lorentz force formula 
for a moving charge, from which they may be deduced. They are 'intuitive' extensions 
of the static formulae (the first arises by energy considerations, and the second and 
third by the replacement of E by E +  V A  Blc). 
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4. The case of constant velocity 

ones : 
When the dipole centre is at rest, the quantities P, F and C reduce to well-known 

P(0, = ti,,, E o ,  (4.1) 

We may verify that, if the velocity V is constant, the expressions (3.1), (3.2), (3.3) 
arise from these by Lorentz transformation with velocity - V .  Taking (4.1) and (4.2) 
first, with the aid of the Lorentz 'matrix' 

we have, by transformation, 

Hence 

These expressions still contain E(, , ,  B(o,, C(,, and n(,,. E, , ,  and B,, ,  can be elimin- 
ated in terms of E and B by the following: 

PV E,,, = P E +  -ABB(I-p)  
C 

V . B  
B,,, = P B -  h I ( 1 - p )  C 

(?)V 

(4.5) 

which arise by transforming the ordinary electromagnetic field 'matrix' .F : 
9 ( 0 ,  = L,.FLVT (or see, for example, Panofsky and Phillips 1964, p. 330). The  
operator vco, may be eliminated using 

pv 2 V 
V(0, = - , + 0 + ( ~ - 1 ) - ( V .  v )  

c cct V.'2 

which is obtained from 

Finally, the expression for n,,, may be deduced by Lorentz-transforming the moment 
six-vector (-fin, pn A Vjc) of (2.2) to its value ( -  n,,,, 0) in the rest frame, This 
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can be done most easily by substituting - pn and - n,,, for E and E,, ,  in (4.5) : 

PV n,,, = P(Pn)+-A 
C 

= n + P " ( ~ . n j - + P ( l - P ) ( , ) v  V V . n  
C 

V . n  

V . n  

(4.7) 

Thus, finally, substituting (4.5), (4.6) and (4.7) into (4.4), we should obtain the 
original expressions for P and F ( (3 .1)  and (3.2)). Since this calculation is very lengthy 
we may show the result in the case of static fields. From (4,1), (4.2) and (4.4) we have 

PV 
p = P 4 0 )  ' E(0) + 7 - 4 0 )  A B,o, 

V V . n  
= [p2( E + -  A B )  . ri +P(P- 1)(1,2)(V I E ) @  - 1 - ( P -  I ) ) ]  

C 

8 2  V" 
= (8"- 7) 

n ' .  V E . V  
= pn' . E + P 3 ( 7 - )  (7-) 

V .  r i ~  ( B -  V A  E / c )  
V" - I v ]  
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This verifies the expression. 
Similarly, since the couple C transforms as a six-vector, we may deduce that the 

expression for the couple (3.3) is obtained from its rest value (4.3) by carrying out a 
Lorentz transformation with velocity - V of the couple six-vector ( - pCA V/c, - PC) 
to its value (0, -C(o)) in the rest frame. For this we may use the second of the 
expressions (4.5) with V replaced by - V, B o ,  by - pC, B by - C(o)  and E by 0: 

- p c = p ( - C ( , ) ) + ( l - p ) ( - q )  v. 
. ,  

Hence 

) ("vzE)nAV 
V 

= P n A ( E + - - A B  C + ( l - p )  - 

V -p( 1 -p> ;( v A (E + ; * B ) )  
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We have therefore shown that the general expressions which we obtained earlier 

for the force and couple arise by Lorentz transformation from the static expressions 
for the force and couple. I n  seeking these expressions we have assumed the vector 
and six-vector character of force and couple (also moment), but no other general 
assumptions have been made, so that the formulae for the force and couple in this 
case could have been deduced without the need of special methods. 

Appendix 

we have 
We derive expression (2.4) for the modulus of n. From q"qu = -M2,  qaVu = 0 

= M 2 - P 2 ( T )  n . V  . 

hence 
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